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BACKGROUND:Ever since Edward Tolman’s
proposal that comprehensive cognitive maps
underlie spatial navigation and, more gen-
erally, psychological functions, the question
of how past experience guides behavior has
been contentious. The discovery of place cells
in rodents, signaling the animal’s position
in space, suggested that such cognitive maps
reside in the hippocampus, a core brain re-
gion for human memory. Building on the
description of place cells, several other func-
tionally defined cell types were discovered in
the hippocampal-entorhinal region. Among
them are grid cells in the entorhinal cortex,
whose characteristic periodic, six-fold sym-
metric firing patterns are thought to provide
a spatial metric. These findings were com-
plemented by insights into key coding prin-
ciples of the hippocampal-entorhinal region:
Spatial representations vary in scale along
the hippocampal long axis, place cells remap
to map different environments, and sequen-
tial hippocampal activity represents nonlocal
trajectories through space. In humans, the
existence of spatially tuned cells has been
demonstrated in presurgical patients, and

functional magnetic resonance imaging pro-
vides proxy measures for the noninvasive
investigation of these processing mecha-
nisms in human cognition. Intriguingly, re-
cent advances indicate that place and grid
cells can encode positions along dimensions
of experience beyond Euclidean space for
navigation, suggesting a more general role of
hippocampal-entorhinal processing mecha-
nisms in cognition.

ADVANCES: We combine hippocampal-
entorhinal processing mechanisms identified
in spatial navigation research with ideas
from cognitive science describing a spatial
representational format for cognition. Cog-
nitive spaces are spanned by dimensions
satisfying geometric constraints such as be-
tweenness and equidistance, enabling the
representation of properties and concepts
as convex regions of cognitive space. We
propose that the continuous population code
of place and grid cells in the hippocampal-
entorhinal region maps the dimensions of
cognitive spaces. In these, each stimulus is
located according to its feature values along

the relevant dimensions, resulting in nearby
positions for similar stimuli and larger dis-
tances between dissimilar stimuli. The low-
dimensional, rigid firing properties of the
entorhinal grid system make it a candidate
to provide a metric or distance code for cog-
nitive spaces, whereas hippocampal place
cells flexibly represent positions in a given
space. This mapping of cognitive spaces is
complemented by the additional coding prin-
ciples outlined above: Along the hippocampal
long axis, cognitive spaces are mapped with

varying spatial scale,
supporting memory and
knowledge representa-
tions at different levels
of granularity. Via hip-
pocampal remapping,
spaces spanned by differ-

ent dimensions can be flexibly mapped and
established maps can be reinstated via at-
tractor dynamics. The geometric definition
of cognitive spaces allows flexible general-
ization and inference, and sequential hippo-
campal activity can simulate trajectories
through cognitive spaces for adaptive decision-
making and behavior.

OUTLOOK:Cognitive spaces provide a domain-
general format for processing in the hippocampal-
entorhinal region, in line with its involvement
beyond navigation and memory. Spatial navi-
gation serves as a model system to identify key
coding principles governing cognitive spaces.
An important question concerns the extent to
which firing properties of spatially tuned cells
are preserved in cognitive spaces. Technolog-
ical advances such as calcium imaging will
clarify coding principles on the population
level and facilitate the translation to human
cognitive neuroscience. Spatial navigation is
mostly investigated in two dimensions and
naturally limited to three dimensions; how-
ever, the processing of complex, multidimen-
sional concepts is vital to high-level human
cognition, and the representation of such
high-dimensional spaces is an intriguing
question for future research. Further, the
role of brain networks acting in concert with
the hippocampus, in navigation specifically
and cognitive function in general, will pro-
vide insight into whether and how cognitive
spaces are supported beyond the hippocampal-
entorhinal region. Finally, the precise way in
which cognitive spaces and trajectories through
them are read out for behavior remains to be
elucidated.▪
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Place and grid cells map cognitive spaces. Cognitive spaces are defined by dimensions
satisfying geometric constraints. The example space (left) is spanned by the dimensions of
engine power and car weight. Black dots show different vehicles whose positions reflect their
feature combinations. Place cells (center; colored circles represent firing fields of different
cells) and grid cells (right; circles illustrate firing pattern of one cell) provide a continuous code
for cognitive spaces.
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The hippocampal formation has long been suggested to underlie both memory formation
and spatial navigation.We discuss how neural mechanisms identified in spatial navigation
research operate across information domains to support a wide spectrum of cognitive
functions. In our framework, place and grid cell population codes provide a representational
format to map variable dimensions of cognitive spaces.This highly dynamic mapping
system enables rapid reorganization of codes through remapping between orthogonal
representations across behavioral contexts, yielding a multitude of stable cognitive spaces
at different resolutions and hierarchical levels. Action sequences result in trajectories
through cognitive space, which can be simulated via sequential coding in the hippocampus.
In this way, the spatial representational format of the hippocampal formation has the
capacity to support flexible cognition and behavior.

H
ow past experience guides behavior has
been a highly contested topic for decades.
In 1948, Tolman (1) described evidence for
learning beyond stimulus-response–driven
behavior in rats, foreshadowing the cog-

nitive revolution to follow. He proposed that rats
learn comprehensivemaps of their environments,
which can guide flexible goal-directed behavior
such as finding shortcuts. Tolman coined the term
“cognitive map” and speculated how these maps
might underlie psychological functions. Support
for his controversial speculations was provided
by the first reports of hippocampal place cells
more than 20 years later (2). Place cells are gen-
erally only active when an animal occupies the
cell’s preferred location. These cells were pro-
posed by O’Keefe and Nadel (3) as a potential
neural substrate of Tolman’s cognitive map.
Incorporating the discovery of place cells and
findings from lesion studies, O’Keefe and Nadel
suggested that the hippocampus provides amap-
like reference system, signaling both the position
of the agent and features of the environment for
navigational andmnemonic processing of events
(3). The sensitivity of hippocampal coding to
items or discrete events in the environment (4–6),
differential coding of overlapping path segments
based on task state (7), and widespread deficits

in patients with hippocampal lesions (8) have
been captured in the development of relational
memory theory (8–10). This account builds on
the capabilities of the hippocampus for asso-
ciative binding to link event representations into
relational networks and has offered a counter-
pole to an exclusively spatial-processing view
of the hippocampus. Episodic memories can be
formed by linking successive event representa-
tions and episodic trajectories into ensemble
patterns stored in hippocampal networks for sub-
sequent retrieval (8, 10–14). Recent advances
demonstrate a hippocampal involvement in
flexible cognition beyond the domains of nav-
igation and memory (15).

Space codes as a representational
format for cognition

We describe domain-general core coding princi-
ples from spatial navigation research that have
the potential to support a wider span of cogni-
tive functions. Specifically, we propose that the
hippocampal-entorhinal system represents expe-
rience in cognitive spaces [see conceptual spaces
in (16, 17)]. A cognitive space is thought to be
spanned by a set of quality dimensions, which
can be closely related to sensory inputs but also
comprise abstract features (16). A given stimu-
lus can be located in a cognitive space according
to its set of feature values along a set of quality
dimensions. Each dimension is equippedwith an
underlying metric and follows geometric con-
straints satisfying the mathematical notions of
betweenness and equidistance (16).
Consider the following example: When plan-

ning to buy a new car, you might describe cars
along two dimensions: their engine power and
their weight (Fig. 1). Depending on the two fea-
tures, vehicles can be located in this two-
dimensional space; for instance, a “sports car”
might be rather lightweight but have a strong

engine. In this example, we might treat the di-
mensions as separable. However, stimuli can also
vary along integral dimensions, on which a given
stimulus cannot be described independently. For
example, a car’s color can only be fully described
when assigning values on all three integral di-
mensions (hue, saturation, and brightness) that
constitute the color domain (16). Different cog-
nitive spaces might have different underlying
metrics—for example, the Euclidean or the city-
blockmetric—that allow distances to be assigned
along a dimension reflecting the degree of sim-
ilarity between locations in cognitive space with
similar stimuli located close together (16, 18).
Building on the geometric characterization of

quality dimensions, a property is defined as a
convex region in some domain, with convexity
meaning that for all points x and y in the region,
the points between x and y also fall into the
region (16). In this framework, a property con-
stitutes the simplest form of a concept based on
only one domain—for example, describing a car
as “heavy.”Defining properties as convex regions
enables generalization, in that a property of two
stimuli x and y can be inferred to be shared by
any stimulus z falling between x and y. There-
fore, the geometric constraints on cognitive spaces
allow inference about never-experienced stimuli.
Hence, cognitive spaces afford great cognitive
flexibility, going beyond associative and transi-
tive inferences also permitted by relational net-
works (8–10).
More complex concepts comprise multiple do-

mains and information about their interrelations.
Thus, a concept is defined as a set of convex re-
gions in a number of domains, with domains
weighted on the basis of salience and additional
information about how the regions in different
domains are correlated (16). In our example,
racing cars would occupy a region characterized
by high power and low weight (Fig. 1). Follow-
ing the spatial definition of concepts, different
exemplars correspond to more or less central
positions, with prototypical members (19) lo-
cated centrally in the conceptual region. Using a
Voronoi tessellation of a continuous space with a
Euclidean metric, where all locations in a given
space are discretized as belonging to the nearest
prototype, convex regions emerge and allow clas-
sification of individual stimuli (16).
We propose that processing mechanisms in

the hippocampal-entorhinal systemarewell suited
to support cognitive spaces as a domain-general
format for flexible, high-level cognition in hu-
mans. Studies of spatial navigation describe how
space is mapped by a continuous, multiscale code
of function-specific cells in the hippocampal-
entorhinal system. This system enables flexible
mapping of different environments and simu-
lations of trajectories through space via tempo-
rally compressed sequences. These processing
mechanismsmight have developed from original-
ly mapping navigable space to also representing
cognitive spaces, consistentwith an evolutionarily
preserved circuitry of the hippocampal-entorhinal
region across mammals (20), the translation of in-
sights from spatial navigation research in rodents
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to human navigation and beyond (3, 21, 22)
(Box 1 and Fig. 2), and the notion of a core sys-
tem of geometry (23).

From spatial navigation to
cognitive spaces

In the mammalian brain, positional information
is conveyed by the spatially constrained firing
of place cells (2) and grid cells (24) during spatial
navigation. Place cells in the hippocampus are
preferentially active when the animal occupies
a certain position within the environment: the
cell’s receptive field or place field. The firing
fields of the population of place cells are thought
to cover the entire environment, thereby provid-
ing a map-like representation of the animal’s
surroundings (2, 3). Although the firing of a
place cell is usually restricted to one place in a
small environment, grid cells in the medial
entorhinal cortex (EC), one synapse from the
hippocampus, exhibit multiple firing fields lo-
cated at the vertices of equilateral triangles tiling
the entire environment (24). These regular, six-
fold symmetric firing patterns are assumed to
support spatial navigation by providing a co-
ordinate system of the environment (24, 25).
The entorhinal grid system is assigned a key role
in path integration and vector navigation (25–28).
Intracranial recordings in patients navigat-

ing virtual reality environments established the
existence of place cells (29) and grid cells (30) in
humans. The six-fold symmetry of grid cell firing
has been translated to noninvasive functional

magnetic resonance imaging (fMRI) in healthy
volunteers, where grid-like hexadirectional sig-
nals have been observed in the EC during navi-
gation (22, 31–37) (Box 1 and Fig. 2). The brain’s
spatial navigation system (25, 38) further in-
cludes head direction cells conveying informa-
tion about the animal’s head direction (39), goal
and goal direction cells signaling egocentric
directions to navigational goals (40, 41), speed
cells sensitive to running speed (42), and border
(43, 44) or boundary vector cells (45) responding
to borders in the environment.
The firing of place and grid cells conveys po-

sitional information to navigate Euclidean space.
We hypothesize that the spatially constrained
firing of place cells and the metric provided by
the entorhinal grid system might provide a
domain-general mechanism to map dimensions
of experience. In this framework, the activity
of place cells can be conceived as indexing lo-
cations in a cognitive space spanned by the
entorhinal grid system. Three further neural
coding mechanisms identified in spatial navi-
gation studies illustrate how the hippocampal-
entorhinal systemmay support a coremechanism
of mapping cognitive spaces. First, the firing
fields of place and grid cells increase in size along
the dorsoventral axis of the rodent hippocampus
(24, 46–49), in line with mapping of cognitive
spaces at different levels of granularity for multi-
scale representations of knowledge hierarchies or
nested conceptual information. Second, the abil-
ity of place cells to undergo global remapping

(50–52) allows the flexible formation of a mul-
titude of uncorrelated maps for different cogni-
tive spaces, which can be reinstated via attractor
dynamics (11, 13, 53, 54). Third, sequential activ-
ity of place cells (55–57) and grid cells during
replay (58–60) and theta oscillations (61) enables
the simulation of trajectories (12, 62, 63) through
different locations in a cognitive space for adapt-
ive cognition and behavior.

A continuous map of experience

The spatially constrained firing of place and grid
cells provides a continuous code for the dimen-
sions of space, in which neighboring positions
have similar representations due to partially
overlapping firing fields across the population
of cells (Fig. 3, A and B). We build on findings
that the continuous code of spatially selective
cells maps dimensions of experience beyond
Euclidean space, which affords flexible cognition
via the formation of cognitive spaces, whose di-
mensions are geometrically constrained as de-
scribed above.
Unlike in rodents, the visual systemhas evolved

to be the dominant source of sensory information
in primates. During visual exploration of natural-
istic images, neurons in the primate EC encode
gaze position with six-fold symmetric firing pat-
terns that are the hallmark of grid cell firing
during navigation (64). Further, some entorhinal
neurons preferentially discharged when monkeys
explored the edges of the visual stimuli (64), akin
to the firing of border cells in rodents (43–45).
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Fig. 1. Two-dimensional cognitive space.
Schematic of a cognitive space spanned by the
dimensions of car weight (y axis) and engine
power (x axis). Feature values along the two
axes define positions of different cars, resulting
in stimuli with similar properties being located
nearby. Concepts (car icons) are defined as
convex regions of the cognitive space and are
indicated by dashed lines obtained from a
Voronoi tessellation of the space. Under
the assumption of a Euclidean metric, this
discretizes the space into convex regions by
assigning each point in space to the region
around the closest prototypical exemplar
(black dots), with distances based on
dissimilarity along the feature dimensions.

Box 1. Hexadirectional signals in fMRI.

Grid cells are defined by their six-fold symmetric firing patterns tiling environments in a highly
regular fashion (24). Hexadirectional signals serve as a proxy measure for grid-like activity in BOLD-
fMRI during trajectories through cognitive spaces to investigate the role of the grid system in higher-
level cognition in the healthy human brain (22, 31–37). Three analysis approaches relying on a
directional bias of activity have been used (Fig. 2). In the orientation-estimation approach (22), the
data are partitioned to estimate the orientation of the hexadirectional signal in one part of the data.
The prediction of increased levels of BOLD activity for trajectories aligned versusmisalignedwith the
estimated orientation is then tested on an independent data partition. In the second analysis
approach,which is based on fMRI repetition suppression, the hexadirectional grid code is reflected in
correlations of BOLD activity during trajectories in a given direction with the time since the last
trajectory at an angular offset of 60° (22). The third approach analyzes the similarity of multivoxel
patterns as a function of angular differences between trajectory directions to test the assumption
that activity of the grid system should be reflected in a 60°modulation of entorhinal activity patterns
(33). Hexadirectional signals can serve as a showcase example for how insights from rodent
electrophysiologymight be translated to human navigation in fMRI and explored in human cognition
and behavior more broadly (22, 31–37).

Although the BOLD responsemeasuredwith fMRI does not reflect single-cell activity, it provides a
hemodynamic proxy of population activity (159). How can the 60° symmetry of grid cell firing
patterns be translated to a bias in population activity picked up by fMRI during trajectories
through cognitive space? Although a single grid cell intuitively exhibits hexadirectional activity, a
hexadirectional bias on the population level might result if orientations (78, 79) and spatial
offsets to boundaries (160) of the firing patterns are clustered across cells. Further, this could
potentially be reflected in directional biases in the local field potential in the EC; see also recent
findings inMEG and intracranial electroencephalography (161–163). Additionally, conjunctive grid
cells (25) also modulated by heading direction might contribute to the hexadirectional signal if the
preferred directions of these cells align with the axes of the cells’ grid pattern (22). Technological
advances, such as two-photonmicroscopy (145), that enable imaging of cellular responses in larger
portions of the rodent brain might allow future research to shed further light on the dynamics
underlying hexadirectional signals on the population level.

RESEARCH | REVIEW
on N

ovem
ber 14, 2018

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/


Others were tuned to saccade direction (65),
putatively signaling information similar to that
provided by head direction cells (39). Together
with two recent reports of eye movement–
dependent hexadirectional signals in the human
EC (35, 36), these findings support the notion
that representations of visual space follow coding
principles identified in spatial navigation research
in rodents, suggesting a shared neural basis.
Next to its role in parsing sensory information,

this spatial mapping mechanism might also en-
code a dimension inherent to all experience: time.
During space-clamped running throughout a
temporal delay, so-called time cells preferentially
fire at specific time points (66, 67). The popula-
tions of these time cells in the hippocampus and
EC overlap substantially with the populations
of place and grid cells, respectively, which sug-
gests that cells in these regions might exhibit
mixed selectivity for space and time (68, 69).
Although these hippocampal time cells map re-
peated intervals in the range of seconds, it re-
mains elusive how time might be discriminated
at larger scales. For this, an ongoing temporal
signal slowly drifting across hours and daysmight
be transmitted to the hippocampus from the
lateral EC, enabling the tagging of time and
order to events for mnemonic processing (70).
Themappingof dimensionsby thehippocampal-

entorhinal system might be a general mecha-
nism to code for task-relevant information. In
a sound modulation task, rats manipulated the
frequency of an auditory stimulus to “navigate”
to a target frequency (71). Cells in the hippocam-
pus and EC exhibited discrete firing fields with
elevated firing constrained to each cell’s pre-
ferred frequency range, thereby mapping the
continuous dimension of sound frequency so
that neighboring frequencies exhibited similar
firing patterns across cells (Fig. 3C). A subset of
the cells carrying frequency-specific information
in the sound modulation task could be charac-
terized as place and grid cells during random
foraging (71). Hippocampal representations of
continuously changing odor concentrations sug-
gest that the directional selectivity of place cells on
a linear track might be preserved when mapping
a nonspatial dimension (72). This suggests a flex-
ible recruitment of cells to map task-relevant di-
mensions of experience while maintaining spatial
coding properties.
However, we are constantly faced with com-

plex stimuli defined by not one but multiple

feature dimensions. Spatial coding has been dem-
onstrated for stimuli varying along two inde-
pendent dimensions. In one recent study, human
participants learned to associate target objects
with silhouettes of birds (Fig. 3D) differing in
the length of their necks and legs (32). While
undergoing fMRI, participants watched trajec-
tories through this two-dimensional feature space,
and BOLD (blood oxygen level–dependent) sig-
nals were analyzed as a function of the angular
orientation of these trajectories following the
analysis developed to investigate grid coding
during virtual navigation (Box 1 and Fig. 2)
(22). Hexadirectional signals were observed in
the EC, as well as in a network of regions (32)
involved in human autobiographical memory
(63, 73, 74) that also exhibited hexadirectional
signals during navigation (22). Within partici-
pants, the orientation of the hexadirectional
signal was consistent across frontal andmedial
temporal brain areas and stable over separate
sessions more than a week apart (32), suggesting
a role of the entorhinal grid system in storage and
retrieval of consolidated conceptual knowledge.
In our framework, place and grid cells not only

map Euclidean space for navigation, but also
map cognitive spaces spanned by relevant fea-
ture dimensions (Fig. 3A). Building on the
geometric description of cognitive spaces, this
mapping provides an account for how multidi-
mensional spaces of experience can be instanti-
ated in the hippocampal formation. If stimuli are
located in the space based on their characteristic
values on the feature axes, place cell firing might
encode stimuli at specific locations in cognitive
space based on the respective values along the
feature dimensions (16). Similar stimuli are lo-
cated at nearby positions, whereas dissimilar
stimuli might be located farther apart in cog-
nitive space. Distances between positions are
reflected in population vectors of place cell ac-
tivity, which will be more similar for nearby po-
sitions because of the overlapping firing fields of
cell ensembles. Therefore, the mapping of cogni-
tive spaces by cell populations in the hippocam-
pal-entorhinal region provides a mechanism to
generate similarity between stimuli (16), a con-
cept central to generalization and planning (75).
Applying this to the introductory example of

a two-dimensional space of engine power and
weight, positions encoded by constrained firing
of place cells reflect specific combinations of
values along the dimensions—for instance, high

engine power and low weight. This might fall in
a region representing the concept of racing cars,
which would typically be characterized by this
feature combination. The convexity of concep-
tual regions enables the generalization that a car
whose engine power and weight fall between
those of two known sports cars also belongs to
this category (16). In this framework, the regular
firing patterns of grid cells might provide a
metric (24, 26–28) for the dimensions of cog-
nitive spaces. This would allow not only for the
encoding of positions but also their relations in
a fashion similar to that proposed for spatial
navigation and memory (21, 25). Thereby, the grid
system might provide the coordinate system for
the dimensions of cognitive spaces, in line with its
suggested role in extracting dimensions from task
states (76, 77). However, the precise nature of the
metric remains elusive, because different metrics
can underlie cognitive spaces (16) and because
the impact of deviations from regular hexagonal
firing patterns (47, 78, 79) is unclear.
Neural recordings in patients suggest the ex-

istence of cells in the hippocampus and EC that
selectively respond to a narrow range of stimuli
(80). Despite the limitations imposed by the ne-
cessity of stimulus selection, the claim that this
phenomenon reflects coding of conceptual enti-
ties such as famous people or places is supported
by the preservation of responses across stimulus
modalities. Even though there are no experimen-
tally defined feature axes in these studies, these
cells sometimes respond similarly to entities that
appear nearby in cognitive space. For example,
a cell responding to pictures of the Tower of
Pisa also exhibited increased firing in response
to the Eiffel Tower (80). This is in line with the
assumption that proximal positions in cognitive
space are represented by overlapping cell assem-
blies, comparable to the representations of nearby
locations in space by overlapping place cell
populations.
The actions and positions of other agents in

space are central to interactingwith and learning
from conspecifics (81). In bats and rodents, hippo-
campal place cells of an observer animal encode
the location of a conspecific or a moving object,
indicating the tracking of relevant agents in the
environment (82, 83). The human hippocampus
also signals the position of others along inter-
personal dimensions. In one study, participants
were asked to respond to statements of fictitious
characters located in a two-dimensional space
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Fig. 2. Hexadirectional signals in fMRI. Left:
The number of grid cell firing fields crossed
depends on the direction of a trajectory through
cognitive space. More fields are crossed during
trajectories aligned with the grid (blue), translating
to stronger entorhinal BOLD activity (top center;
see text for details). Right: This effect was first
observed during virtual navigation in the entorhinal
cortex. [Adapted from (22)] The similarity struc-
ture of entorhinal multivoxel patterns exhibits a
60° modulation when comparing trajectories as a function of their angular difference as the grid is sampled at the same phase every 60° (bottom center),
irrespective of its alignment.
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of power and affiliation (84). Hippocampal ac-
tivity tracked the position of the counterpart in
this social space at times of interaction, exhibit-
ing greater activity during interaction with coun-
terparts with higher power and affiliation (84).
Hippocampal encoding of the power dimension
has also been demonstrated after learning of
social hierarchies (85). These results suggest a
hippocampal involvement in the representation of
others in both navigable and interpersonal spaces.
It is thus conceivable that coding of funda-

mental dimensions of experience also underlies
the involvement of the hippocampal-entorhinal
system in episodic memory, where individual
episodes are considered to be embedded in a
spatiotemporal context (14). Because place and
grid cells carry information about both space
and time, they might thereby signal the context
in which events are experienced. Evidence for
this stems from a study in which participants
encountered objects along a fixed route through
a virtual city. Through learning, the similarity
structure of multivoxel activity patterns in the

hippocampus changed to reflect remembered
spatial and temporal distances between object
pairs (86). This is in line with the notion that the
hippocampus encodes the dimensions of space
and time along which episodic experiences are
organized and the central role of the hippocampal
formation in binding stimuli or events to a con-
text in service of episodic memory (8, 10, 87).
Together, these findings suggest that the

firing of functionally defined cell types in the
hippocampal-entorhinal system prevails across
task-relevant dimensions to map dimensions of
experience in cognitive spaces. Stimuli are ar-
ranged in a spatial format where similarity be-
tween positions is reflected in the distance along
the dimensions spanning the cognitive space.
The representation of cognitive spaces allows
not only associative or transitive inference,
accounted for via overlapping relational net-
works in the realm of relational memory theory
(8–10), but also generalization and inference to
novel stimuli and situations. Below, we describe
how key coding principles of the hippocampal-

entorhinal system make it an ideal candidate
for entertaining cognitive spaces.

Multiple scales of coding

One hallmark of abstract knowledge is the rep-
resentation of information at different hierar-
chical levels (88, 89). For example, you might
identify a particular vehicle characterized by
low weight and high engine power as a Porsche
(Fig. 4A). On a more general level, you might
classify it as a sports car, allowing you to infer
some properties such as high maximum speed,
whereas on a more specific level you might won-
der about the particular model and its associated
characteristics. A likely mechanism for learning
and representing information at different scales
(88) is described in studies investigating the re-
sponse properties of place and grid cells along
the dorsoventral axis of the rodent hippocampal
formation (Fig. 4B) (24, 46–49). On an 18-m-long
linear track, the width of hippocampal place cell
firing fields increased from less than 1 m in the
dorsal hippocampus to approximately 10m in the
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Fig. 3. Place and grid cells map dimensions of cognitive spaces.
(A) Left: Colored circles illustrate firing fields of hippocampal place cells in a
space spanned by the dimensions of car engine power and weight. Each color
represents one individual place cell. Collectively, the firing fields map all
locations of the space. Right: The hexagonally symmetric firing pattern of grid
cells (one cell’s pattern is shown) provides a metric for the dimensions of the
space. (B) Firing of a place cell (left) and a grid cell (right) recorded from the
hippocampus and entorhinal cortex, respectively. Spike locations (red dots) are
shown on the animal’s path (black line) through a square enclosure. [Adapted
from (164)] (C) Frequency fields of place and grid cells. Left:While the animal
presses a lever to manipulate the frequency of a tone, different cells fire at
different frequencies during the frequency sweep. Center and right: Two

example cells active in the sound-modulation task identified as a place cell and
a grid cell, respectively, during navigation. Center panels show peristimulus
histograms with firing rate in hertz (top) and raster plots displaying spikes
as a function of sound frequency for different trials (bottom). Right panels
show spatial firing rate maps with maximum firing rate. [Adapted from (71)]
(D) Hexadirectional signals in two-dimensional bird space. Left: Participants
learned associations of Christmas symbols and bird silhouettes with variable
leg and neck length. Arrow illustrates example trajectory with angle q. Right:
During trajectories through this space defined bymorphing birds, hexadirectional
signals were observed in the entorhinal cortex (EC) and a network of brain
regions implicated in mnemonic processing (PCC, posterior cingulate cortex;
vmPFC, ventromedial prefrontal cortex). [Adapted from (32)]
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ventral hippocampus (48). In human fMRI, this
might be reflected in a voxel-similarity gradient
along the hippocampal long axis (90). Similarly,
the scale of entorhinal grid cells increases from
the dorsal to the ventral parts of the medial EC,
reflecting larger firing fields and larger spacing
between fields (24, 47, 49, 91). In contrast to place
cell firing field width (48), the scale of grid pat-
terns changes in discrete steps betweenmodules
of cells sharing a similar scale and orientation
(24, 47, 49, 78).
Different scales of information represented at

distinct anatomical locations of the hippocampal
formation might serve as a general mechanism
across different stimulus domains. Positional de-
coding in cognitive spaces might benefit from
the combination of multiple scales of representa-
tion analog to navigable space (26, 27). The spac-
ing of firing fields of grid cells responding to
locations in visual space increases with anatom-
ical distance to the rhinal sulcus (64), which ap-
proximately reflects the anterior-posterior axis of
the primate hippocampus corresponding to the
dorsal-ventral axes of the rodent hippocampus
(92). This is further paralleled by broader tuning
of saccade direction cells as anatomical distance
to the rhinal sulcus increases (65).
Multiple scales of coding along the dorso-

ventral axis of the rodent hippocampus are in line
with the scale increase of mnemonic networks
represented along the anterior-posterior axis
of the human hippocampus (Fig. 4C) in partic-
ipants watching videos of lifelike events forming
narratives (93, 94). The scale at which these
mnemonic networks were represented differed
across the hippocampus: The posterior portion
represented associations of the most recently
linked pair of events, whereas the mid-portion
held information about multiple event pairs and
patterns in the anterior hippocampus were indi-

cative of integrated networks of all events in a
narrative (93). Multiscale event representations,
interacting with mnemonic processing in the
hippocampus, have been dissociated along the
cortical hierarchy in humans (95). Representing
cognitive spaces at different scales allows for
the generalization of specific experience and
the formation of contextual codes via more global
representations. In rodents performing a context-
dependent object discrimination task, ventral
hippocampal neurons exhibited responses gen-
eralizing across events within a spatial context
while strongly distinguishing between contexts
after extended learning, whereas dorsal hippo-
campal neurons discriminated events within the
same context with activity patterns reflecting the
hierarchical task structure (96, 97). The repre-
sentation of integrated codes for overlapping
memories might further enable inferential rea-
soning about relatedmemories. In humans, tran-
sitive inference and generalization are supported
by anterior portions of the hippocampus (98),
whereas more posterior portions are associated
with the retention of original memories and ele-
ment segregation when associations overlap
(99, 100). These findings suggest a mnemonic gra-
dient along the hippocampal long axis in humans,
paralleling the differences in granularity of spa-
tial representations along the dorsoventral axis of
the rodent hippocampus. Themost detailed repre-
sentation might allow for fine-grained discrimi-
nation of locations in cognitive space, whereas
the representation of larger areas might enable
inference and the generalization of behavior to
never-experienced stimuli and situations, not lim-
ited by the need for associations between nodes
in relational mnemonic networks (8–10).
Representing knowledge at different levels of

granularity in cognitive spaces requires a cogni-
tive code that can signal positions in this space

at different resolutions. Generalizing from the
above findings to conceptual information, it
appears plausible that the gradient of granularity
plays an important role in learning and repre-
senting hierarchical knowledge structures (88, 89).
In these, overarching categories can be conceived
as larger areas of cognitive space, putatively re-
presented by place and grid cells with larger fir-
ing fields. Subcategories at a finer scale would
then correspond to locations nested within these
larger areas. Such a nested representation of
cognitive spaces could enable inference via the
transfer of knowledge from the superordinate
category to new exemplars or subcategories (16).

Flexible formation of stable
cognitive spaces via remapping
and attractor dynamics

The hippocampus has been shown to contrib-
ute to a variety of cognitive domains (15). If the
hippocampal-entorhinal system maps multitudes
of cognitive spaces, this system needs to exert
remarkable flexibility in terms of the dimen-
sions it can represent, as well as an ability to
rapidly switch between cognitive spaces (Fig. 5A).
This flexibility is demonstrated by the capacity
of hippocampal place cells to undergo global
remapping (50–52). Different subsets of hip-
pocampal cells will exhibit place fields in two
different environments with spatial relation-
ships among cells active in both environments
not being maintained, rendering the two maps
orthogonal to each other (Fig. 5B) (51). In con-
trast to place cells, entorhinal grid patterns have
varying offsets to boundaries in different environ-
ments but maintain their spatial phase relative
to each other, resulting in consistent relations
between the firing fields of grid cells (101, 102).
These relationships are maintained not only be-
tween environmental contexts but also across
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Fig. 4. Multiple levels of representation. (A) Representations of
information at different levels of granularity can be supported by multiple
spatial scales in the hippocampal formation. Narrower (left column) or
broader (right column) positions in cognitive spaces can be encoded by
place cells (top row) and grid cells (bottom row), respectively. Schematics
illustrate firing fields of four different cells. Higher-level information (e.g.,
about the concept of sports cars) can be ascribed to a lower-level stimulus
(black cross). For example, when learning that a specific car model is a
sports car, we can infer that it is likely to have high engine power. (B) The
firing field size of place cells (top) and the size and spacing of grid firing

fields (bottom) increase from dorsal to ventral recording sites in the rodent
hippocampal-entorhinal system. Top panels show firing rates in hertz as a
function of position along the linear track. Percentages indicate location
along the dorsoventral axis. Bottom panels show spike locations (black)
overlaid on the animal’s path (gray). [Adapted from (48, 49)] (C) The
granularity of mnemonic networks scales along the long axis of the human
hippocampus with pairwise associations of elements in posterior and
integrated networks in anterior hippocampus. Bars show model evidence
(mean ± SEM) for mnemonic networks of small (red), medium (orange),
and large (purple) scale. *P ≤ 0.05, +P = 0.053. [Adapted from (93)]
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behavioral states, with essentially identical cross-
correlation patterns exhibited by populations
of grid cells and other medial entorhinal cells
during free foraging, slow-wave sleep (SWS), or
rapid–eye movement (REM) sleep (59, 60).
Remapping-like behavior of hippocampal cells

has also been observed for time cells encoding
temporal intervals during the delay of amemory-
based discrimination task (67). When the length
of the delay was altered, a subset of time cells
remapped. Some cells ceased to be active, others
shifted their activity to a different time during
the delay, or previously silent cells became active,
whereas other cellsmaintained their firing during
absolute or relative times of the altered delay (67).
The flexible recruitment of cells to map positions
in cognitive spaces is further illustrated by hip-
pocampal representations of conspecifics, where
subsets of place cells exclusively encoded the lo-
cation of the self, the conspecific, or an inanimate
object, whereas other cells exhibited firing fields
for both the self and other, but at different lo-
cations (83). The decorrelation of hippocampal
representations has also been observed using
multivariate pattern analyses of human episodic
memory. Reconfigurations of hippocampal ac-
tivity patterns reflect associations and narrative
insight in increased similarity but also reduce
overlap, resulting in decorrelation through ex-
perience (103, 104).
If different cognitive spaces are represented

by orthogonal subsets of hippocampal cells, how
can already-formed representations of spaces be
reinstated to provide stable maps over multiple
encounters? In rodents, reinstatement of place
cell firing patterns has been observed on a trial-
by-trial level, indicating rapid switching between
maps upon reexposure to a highly familiar cir-
cular and square enclosure (Fig. 5C), respectively
(105). A likely candidate mechanism governing

the reactivation of established cognitive spaces
may involve attractor networks (11, 13, 53, 54). In
intermediate steps of a morph sequence trans-
forming a square to a circular environment, hip-
pocampal patterns resemble the original map
until a switch point at which the representation
is pulled toward exhibiting the other map (105),
although progressive transformations of hippo-
campal codes have been observed under differ-
ent experimental conditions (106). Neuroimaging
research points toward a role for stored hippo-
campal representations in perceptual discrimina-
tion (107) and attractor dynamics specifically in
memory-guided human behavior (Fig. 5D) (108).
Participants learned positions of identical sets
of objects in two virtual environments distin-
guished by background cues and were subse-
quently tested in a series ofmorph environments
following a linear transformation between the
original environments. Spatial memory responses
in the intermediate environments followed the
sinusoidal pattern predicted by the influence of
attractor networks and were paralleled by corre-
sponding nonlinear changes of hippocampal ac-
tivity patterns (108).
These findings indicate that response proper-

ties of the hippocampal-entorhinal system en-
able the formation of independent maps for
distinct cognitive spaces to map different dimen-
sions. Consider again the car example: In a dif-
ferent context, weight and engine power might
not be the most relevant feature dimensions;
rather, a new space might be spanned by the di-
mensions of passenger capacity and price (Fig.
5A). Via hippocampal remapping, positions in
the new space can be mapped and the positions
of different cars are redefined based on their
feature values on the new dimensions, resulting
in new similarity relations. The more rigid firing
properties of the entorhinal grid system might

provide a stable metric through its intrinsic co-
herence across spaces. Once established, rapid
switching between the maps of different cogni-
tive spaces through remapping demonstrates the
flexibility of the system and permits the repre-
sentation of relevant information based on be-
havioral context. Switches between maps might
be triggered by internal or external cues, atten-
tional shifts, or changes in task demands render-
ing other dimensions relevant. Attractor dynamics
might serve as anchors for stable representations,
which enable learning over multiple encounters
as well as the generalization of behavior across
similar experiences.

Simulations and readout of trajectories
for decisions

Recording studies in rodents have revealed struc-
tured activity of hippocampal place cells during
rest in which cells fire sequentially, resulting in
trajectories reflecting past experience on a maze
(55, 56). This so-called “replay” demonstrates the
ability of spatially tuned cells to represent loca-
tions beyond the animal’s current position (57).
During replay sequences, place cells maintain
their spatial relationships to each other (55, 109),
resulting in trajectories through space occurr-
ing both in forward and reverse order (109, 110).
Place cell sequences during replay are temporally
compressed relative to trajectories during run-
ning (56, 57, 111) and might thereby allow fast
simulations of trajectories through cognitive space
(Fig. 6, A and B). Sequences replaying trajectories
in reverse ordermight evaluate previous paths and
associate the states visited with reward informa-
tion for learning of adaptive behavior (57, 112–114).
Hippocampal sequences may extend to the simu-
lation of potential future paths and their outcomes.
In a spatial alternation task, replay of both cor-
rect and incorrect future trajectories supports
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Fig. 5. Remapping and attractor dynamics for
flexible cognitive spaces. (A) Different task-
relevant dimensions (e.g., a car’s passenger
capacity and price instead of its engine power
and weight) can be mapped by the recruitment
of a different subset of place cells and the
rearrangement of firing fields between spaces.
(B) In navigating rodents, place cells remap to
represent different environments. Spike locations
(red) overlaid on the animal’s path (black)
and rate maps (warmer colors indicating
increased firing) are shown for two place cells
(rows) in two environments (columns). One place
cell is active in the square environment but not
in the circular environment, whereas the other
exhibits a firing field in both environments but
at unrelated positions. [Adapted from (101)]
(C) Attractor dynamics enable rapid switches
between established maps. The similarity to
established maps of a square environment (red) and a circular
environment (blue) is shown for a sequence of intermediate environments.
The data show a sigmoidal rather than linear shift function. [Adapted from
(105)] (D) Attractor dynamics in human spatial memory. After learning object
locations in two base environments, A and F, participants were tested in
a sequence of intermediate environments. Left: Spatial memory responses
exhibited patterns better explained by a sigmoidal function than by a linear

function. Center: Hippocampal multivoxel pattern similarity was better
predicted by a sigmoidal model than by a linear model of behavior. Right:
The fit of a canonical sigmoidal function to spatial memory responses was
associated with hippocampal pattern similarity values across participants.
Tvalues from general linear modeling (GLM) reflect fit of sigmoidal model
to hippocampal fMRI and behavioral data. Error bars in (C) and (D) reflect
SEM. *P < 0.05. [Adapted from (108)]
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learning and planning (115) and the disruption
of sequences during sharp-wave ripples impairs
successful performance (116). Further, place cell
sequences reflect future paths during goal-directed
behavior (117) and trajectories extending into the
shock zone of a linear track prior to avoidance
behavior (118). These findings dovetail with ex-
tensive research on place cell sequences during
ongoing theta oscillations, where trajectories
toward potential goals are represented within
different theta cycles (61), suggesting simulations
of possible trajectories through cognitive space.
What role do mental simulations of trajecto-

ries play for planning and decision-making in
humans? During navigational planning on a cir-
cular track, hippocampal activity patterns carry
information not only about the start and goal
location, but also locations along the optimal
rather than suboptimal path, in accordance with
sequential simulations of trajectories through
space (119). The entorhinal grid system has also
been linked to imagining navigation (34) and
snapshots from stationary viewpoints (33), im-
plicating it in the planning of trajectories through
space in line with replay in the EC (58–60, 120)
and the observation of grid cell firing during cov-
ert attentional trajectories through visual space
(121). Beyond navigable space, the hippocampal-
entorhinal system extracts statistical regularities
of nonspatial sequences (122, 123) and forms re-
lational maps of the underlying structures from
which the sequences were derived (104, 124), po-
tentially drawn upon to plan trajectories through
task spaces. Indeed, in a nonspatial decision-
making task, sequential reactivations of previ-
ously visited states reflected reverse trajectories
(Fig. 6C) through a space of discrete states rep-
resented by objects (125). Although the nature
of the magnetoencephalography (MEG) signal
and the analysis approach focusing on visual
responses make a direct hippocampal origin of
these results unlikely, theymight reflect sequen-
tial reinstatement of visual representations orches-
trated by the hippocampus (125). Initial evidence

suggests that sequential hippocampal activity can
be observed using fMRI (126). Episodic cues can
elicitmemory-guided simulationofpast experience
influencing choice behavior (127), and prospective
simulations of trajectories through a task’s state
space have been linked to model-based behavior
in a two-stage decision-making task (128). These
findings indicate that trajectories through cog-
nitive spaces representing task states can be
simulated on the basis of prior experience.
Cognitive spaces enable generalization and

can reveal novel trajectories via the represen-
tation of positions along defined dimensions.
The rodent hippocampus can recombine sepa-
rate trajectories across segments of a two-choice
T-maze, usually not experienced successively, to
infrequently construct never-experienced place
cell sequences (113). Similarly, hippocampal place
cells constructed trajectories through previously
nontraversed space after rats observed the place-
ment of a reward on one T-maze arm while con-
fined to the stem of the maze (129). In humans,
hippocampal simulations have been linked to the
construction of imaginary scenarios (12, 62, 63, 73)—
an ability impaired in patients with hippocampal
lesions (130). Mental simulations can be con-
ceived as putative trajectories through the space
of episodic experience (12, 63) and have been
shown to influence decision-making in a delay-
discounting task (131). Furthermore, in a task in
which participants imagined novel compound
goods consisting of two familiar foods, the hip-
pocampus and medial prefrontal cortex flexibly
combine past experiences (132). These findings
show that the hippocampus can flexibly draw
on past experience to form and simulate novel
trajectories through cognitive space allowing
adaptive decision-making and behavior.
Simulations of trajectories building on spatially

tuned cells have been incorporated in models of
episodic memory and consolidation (12, 63, 133).
Replay-inspired simulation of experience has also
been used to integrate reinforcement learning
and deep neural networks in artificial intelli-

gence (134). Here, we suggest that contemplat-
ing a number of stimuli can be conceived as a
trajectory through cognitive space. In line with
its proposed role in future anticipation and pre-
diction (62, 63, 73, 77, 130), the hippocampal-
entorhinal system supports these trajectories
via sequential activity of spatially tuned cells.
The entorhinal grid system might span a space
based on a set of dimensions and thereby pro-
vide the framework for flexible simulations of
positions and trajectories by the hippocampus.
Relevant feature dimensions can range from
locations in a maze to abstract state spaces in
decision-making problems. Novel trajectories can
be generated from past experience, and trajecto-
ries can be simulated via sequential hippocampal
activity to guide future behavior. Building on the
geometric characterization of cognitive spaces,
experience can be generalized to the outcome of
novel trajectories or actions. For example, if two
prior actions undershot and overshot a goal, then
an intermediate trajectory through cognitive
space will approximate the goal more closely.
Although it has been suggested that sequential
activity might reflect inherent hippocampal
dynamics (135, 136), other accounts highlight
hippocampal interactions with state-space rep-
resentations in frontal regions in sequence
generation and action selection, as well as the
role of striatal regions in sequence evaluation
(131, 137–140).

Open questions and future directions

We used spatial navigation in rodents and hu-
mans (25, 38) as a model system to identify key
neural mechanisms and fused them with con-
cepts from cognitive science to describe the
central neural coding machinery underlying
higher-level cognition in humans. Future research
should help to elucidate the generation of cog-
nitive spaces and their governing principles. For
example, the conditions of the generation of the
continuous code in the hippocampal-entorhinal
system are still largely unclear. This concerns both
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Fig. 6. Hippocampal simulations via sequential activity. (A) Sequential
activity simulates different positions (1 to 3) in cognitive space, allowing
the evaluation of different car types along the trajectory when deciding which
car to buy. (B) Simulation of trajectory in a square enclosure. The posterior
probabilities of positions from Bayesian decoding applied to different time
frames during a sharp wave ripple event result in a trajectory through space.
[Adapted from (165)] (C) Reverse trajectories through state space. Left:

States are represented by images; arrows indicate possible transitions
between states. Right: The solid black line shows a “sequenceness” measure
indicating the probability of decoding a successive or preceding state
(positive and negative values, respectively) at different time points after the
decoding of a state during planning. Reverse sequences were observed with a
lag of around 40 ms between state space positions. Inset shows histogram
of lasso penalties from logistic regression. [Adapted from (125)]
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the circuit-level interactions of brain regions (141)
and their maturation (142), the role of spatial cog-
nition during development (143), and the poten-
tial breakdown of spatial codes in aging and
disease (31, 37, 144). Of particular interest is how
precisely the entorhinal grid code emerges in its
hexagonally symmetric form. Advances in tech-
niques such as two-photon calcium imaging
(145) will foster the population-level understand-
ing of neural codes in rodents. In concert with
the rise of high-resolution fMRI and optimized
MEG protocols, this should further bridge the
gap between systems and cognitive neuroscience
to unravel neural mechanisms promoting refine-
ments of processing in cognitive spaces, and to
spur the mapping of brain structures to specific
functions.
Cognitive spaces can be multidimensional.

Therefore, the question of how a continuous code
can be extended to map additional dimensions
is fundamental. Research in humans (146), rats
(147), and bats has shed light on how spatial
coding of place cells (148) and head direction
cells (149) can be extended to the third dimen-
sion. However, grid-like coding in three dimen-
sions remains elusive, as does evidence for spatial
coding in cognitive spaces of higher dimension-
ality. Related to this is the question of how cog-
nitive spaces are spanned by multiple, potentially
integral, dimensions. Further, the nature of the
metric underlying cognitive spaces can be inves-
tigated using measures of neural and behavioral
similarity between positional representations.
The assumption of a Euclideanmetric (150)might
be most intuitive when comparing cognitive to
navigable space, although there is evidence for
topological representations of spaces in both
rodents (151) and humans (124, 152, 153).
Grid cells have been implicated in represent-

ing dimensions of cognitive spaces, but the ex-
tent to which they retain their specific firing
patterns remains to be explored. For instance, is
the modular organization of the EC stable across
cognitive spaces? One might expect that grid
cells from the same module also show similar
orientation and spacing when representing di-
mensions of a given cognitive space, but differ
in their spatial phase from the boundaries of the
space. Generalizing from this question, the role
of other cell types encoding spatial information
in the context of navigation remains to be eluci-
dated. For example, one could envision a role
for border cells in signaling event boundaries
(154–156) or conceptual boundaries when learn-
ing to categorize stimuli drawn from a cognitive
space as belonging to different concepts. Like-
wise, head direction cells (39), goal direction cells
(41), or object vector cells (157) might be involved
in representing relationships between stimuli lo-
cated at different locations in a cognitive space.
Similarly, the role played by networks of brain
regions acting in concert with the hippocampus
(32, 63, 73, 74) for cognitive spaces and differ-
ences in the encoding of multidimensional stim-
ulus spaces in other brain regions—for example,
during face processing in monkey inferotempo-
ral cortex (158)—should be explored.

An intriguing question concerns the measure-
ment of behavioral benefits of cognitive space
formation—for example, via the generation of
shortcuts through cognitive space or the impaired
ability to find shortcuts in lesion patients. Fur-
ther, how does information encoded in different
cognitive spaces interact? Can trajectories en-
coded in one space be transferred to another and
be retrieved there to guide behavior? Conversely,
it might be possible to bring codes from different
cognitive spaces into conflict with one another,
which might result in interference across spaces,
or to investigate effects of deformations of
firing patterns (47, 78, 79) across spaces to fur-
ther elucidate how representations of different
spaces are entertained by overlapping neural
substrates.

Conclusion

In this theoretical article, we propose cognitive
spaces as a primary representational format for
information processing in the brain. Combin-
ing key mechanisms identified in systems neu-
roscience and concepts from cognitive science
and philosophy, we developed a cognitive neu-
roscience framework for processing and repre-
senting information in cognitive spaces in the
hippocampal-entorhinal system. Place and grid
cells might have evolved to represent not only
navigable space, but to also map dimensions of
experience spanning cognitive spaces governed
by geometric principles. In these cognitive spaces,
stimuli can be located based on their values
along the feature dimensions mapped by place
and grid cells. These spatially specific cells pro-
vide a continuous code that allows similar stimuli
to occupy neighboring positions in cognitive
space, encoded by overlapping population re-
sponses. In this framework, concepts are repre-
sented by convex regions of similar stimuli. The
multiscale spatial code along the long axis of the
hippocampal formation enables representing
stimuli at different granularities for both gen-
eralization and maintenance of fine details in
hierarchical knowledge structures. Ever-changing
demands requiring the flexible mapping of dif-
ferent dimensions of relevance are met by the
capacity of the hippocampus to remap to flex-
ibly form cognitive spaces for which the low-
dimensional entorhinal grid code might provide
a stable metric. An established mapping of a
cognitive space might be reinstated via attrac-
tor dynamics and pattern completion to provide
stable representations of familiar dimensions.
Experiencing a sequence of stimuli results in a
trajectory through cognitive space. We propose
that sequential hippocampal activity in the form
of replay and theta sequences allows simulations
of temporally compressed trajectories through
cognitive spaces for flexible cognition and adapt-
ive behavior. In sum, we suggest cognitive spaces
as a domain-general format for human thinking,
thus providing an overarching framework, which
can also help to elucidate cognitive breakdown
in neurodegenerative diseases (31, 144) and to
inform novel architectures in artificial intelli-
gence (134).
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proposal.
code to map information domains of cognitive spaces for high-level cognition and discuss recent evidence for this 
neuroscience. They argue that spatial-processing principles in the hippocampalentorhinal region provide a geometric
philosophy with findings from neurophysiology of spatial navigation in rodents to propose a framework for cognitive 

 review and combine concepts from cognitive science andet al.flexible behavior has been a contentious topic. Bellmund 
Ever since Tolman's proposal of cognitive maps in the 1940s, the question of how spatial representations support

A framework for cognitive spaces
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