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Abstract

Over the last 30 years, our understanding of the neurocognitive bases of consciousness has improved, mostly through studies

employing vision. While studying consciousness in the visual modality presents clear advantages, we believe that a compre-

hensive scientific account of subjective experience must not neglect other exteroceptive and interoceptive signals as well as the

role of multisensory interactions for perceptual and self-consciousness. Here, we briefly review four distinct lines of work which

converge in documenting howmultisensory signals are processed across several levels and contents of consciousness. Namely,

howmultisensory interactions occur when consciousness is prevented because of perceptual manipulations (i.e. subliminal

stimuli) or because of low vigilance states (i.e. sleep, anesthesia), how interactions between exteroceptive and interoceptive sig-

nals give rise to bodily self-consciousness, and howmultisensory signals are combined to formmetacognitive judgments. By

describing the interactions betweenmultisensory signals at the perceptual, cognitive, andmetacognitive levels, we illustrate

how stepping out the visual comfort zonemay help in deriving refined accounts of consciousness, andmay allow cancelling

out idiosyncrasies of each sense to delineate supramodalmechanisms involved during consciousness.
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Introduction

Cognitive neurosciences largely focus on vision, and the field of

consciousness studies is no exception. Counting the number of

peer-reviewed articles published per year with the keyword “con-

sciousness” or “awareness” in the visual, auditory, tactile, and

olfactory modalities, one can note two trends. First and foremost,

starting from the 1990s, the publication rate increases exponen-

tially in all modalities, which attests to the growing importance of

consciousness studies in cognitive neurosciences over the last 30

years (Fig. 1). In addition, looking at the publication rate across

modalities, one cannot but notice the overwhelming dominance of

visual studies compared with all other modalities: in 2015, there

were three times more studies of visual consciousness compared

with auditory consciousness, and around 12 times more compared

with studies of olfactory and tactile consciousness put together.

We see twomain reasons for this “visual bias” in consciousness re-

search. The first one belongs to recent history: the pioneers who

initiated the scientific study of subjective experience in the 1990s

relied on the relatively comprehensive understanding of the visual

system as a starting point to the quest for consciousness, assuming
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that other forms of consciousness may have the same properties:

“We made the plausible assumption that all forms of conscious-

ness (e.g. seeing, thinking, and pain) employ, at bottom, rather sim-

ilar mechanisms and that if one formwere understood, it would be

much easier to tackle the others. We then made the personal

choice of the mammalian visual system as the most promising

one for an experimental attack. This choice means that fascinating

aspects of the subject, such as volition, intentionality, and self-

consciousness, to say nothing of the problem of qualia, have had

to be left on one side” (Crick and Koch 1990b).

The second reason is pragmatic: researchers can rely on a

vast arsenal of experimental paradigms allowing the display of

visual stimuli below perceptual threshold (Kim and Blake 2005;

Dubois and Faivre 2014), while it remains an experimental chal-

lenge in all other modalities [but see exceptions like D’Amour

and Harris (2014) for vibrotactile masking; Gutschalk et al.

(2008); Dupoux et al. (2008); Faivre et al. (2014), for auditory mask-

ing; Sela and Sobel (2010) for olfactory masking, Stevenson and

Mahmut (2013), for olfactory rivalry, or Zhou et al. (2010) for

binaral rivalry]. As most research on perceptual consciousness

relies on a contrastive approach (Baars 1994), the capacity to

present stimuli below the threshold for consciousness is crucial,

and the difficulty to do so in nonvisual domains can be an im-

pediment to research. We acknowledge that this difficulty could

simply be due to methodological reasons, with less effort put

onto the design of audio or tactile masking compared with vi-

sual masking. However, it could also be due to physiological dif-

ferences between senses. One possibility is that the transition

between conscious and unconscious states is gradual in vision,

allowing for fine-grained estimations of unconscious processes,

and more abrupt in nonvisual senses, so that subtle changes in

the stimulation pattern map onto sudden variations in terms of

conscious experience. The possibility that the limen of con-

sciousness (i.e. the transition between unconscious and con-

scious states) is thinner for nonvisual senses warrants

empirical exploration, as it may underlie different properties of

consciousness for visual vs. nonvisual modalities.

In what follows, we summarize four lines of research focus-

ing on the multisensory nature of consciousness. Namely, we

review the evidence showing that signals from distinct sensory

modalities interact even when they are not perceived con-

sciously due to psychophysical manipulations affecting the

content of consciousness (“Multisensory interactions below the

perceptual threshold for consciousness” section), or due to vari-

ations in vigilance states decreasing the level of consciousness

(“Multisensory interactions at low levels of consciousness” sec-

tion). Multisensory interactions between subliminal stimuli or

during low levels of consciousness challenge the view that con-

sciousness is a prerequisite for multisensory processing. We

then address the role of multisensory interactions in the forma-

tion of bodily self-consciousness (BSC), defined as the subjective

experience of owning a body and perceiving the world from its

point of view (“Multisensory interactions for bodily self-con-

sciousness” section). Finally, we review how the metacognitive

self, defined as a second-order monitoring of mental states,

applies to different sensory modalities, and conjunctions of

sensory modalities (“Supramodal properties of metacognition”

section). We conclude by arguing that a multisensory study of

consciousness may allow deepening our understanding of sub-

jective experience beyond the idiosyncrasies of visual

consciousness.

Multisensory Interactions below the
Perceptual Threshold for Consciousness

Most researchers consider conscious experience to be multisen-

sory in nature: For instance, it is difficult to appreciate our fa-

vorite dish dissociating the visual, somatosensory, olfactory,

auditory, and gustatory sensations evoked by it [this applies

both to perception and mental imagery, see Spence and Deroy

(2013)]. Despite its apparent tangibility, the actual nature of

multisensory conscious remains a topic of philosophical debate

[see O’Callaghan (2017), for six differing ways in which con-

scious perceptual awareness may be multisensory], and some

wonder if consciousness is indeed multisensory or rather a suc-

cession of unisensory experiences (Spence and Bayne 2014). As

scientists, we need to assess how different sensory signals are

bound together into a single unified object (i.e. object-unity), but

also more globally to assess whether different objects from dif-

ferent senses fit into a single unified experience [i.e. phenome-

nal unity, see Bayne and Chalmers (2003); Deroy et al. (2014)].

Based on the apparent multisensory nature of conscious experi-

ences, it has been argued that conscious processing plays a role

in merging together inputs from different sensory modalities

(Baars 2002). Yet, recent evidence suggests that cross-modal in-

teractions exist in the absence of consciousness [reviewed in

Deroy et al. (2016)]. The majority of studies contributing to this

recent reevaluation of cross-modal consciousness have focused

on cross-modal interactions occurring outside of visual con-

sciousness, as visual stimuli can be easily presented sublimi-

nally (Kim and Blake 2005; Dubois and Faivre 2014). For

example, several sensory modalities can interact with a visual

stimulus rendered invisible by interocular suppression [binocu-

lar rivalry: Alais and Blake (2005); or continuous flash suppres-

sion: Tsuchiya and Koch (2005)]. Cross-modal interactions were

demonstrated between subliminal visual stimuli and audition

(Conrad et al. 2010; Guzman-Martinez et al. 2012; Alsius and

Munhall 2013; Lunghi et al. 2014; Aller et al. 2015), touch (Lunghi

et al. 2010; Lunghi and Morrone 2013; Lunghi and Alais 2013,

2015; Salomon et al. 2015), smell (Zhou et al. 2010), vestibular

Figure 1. Number of published articles per year containing the key-

words “consciousness” or “awareness” together with “vision” or “vi-

sual” (purple), “audition” or “auditory” (red), “touch” or “tactile”

(blue), “olfaction” or “olfactory” (green), and “multisensory” or “mul-

timodal” (black). Results were obtained from PubMed (www.ncbi.

nlm.nih.gov/pubmed). Fitting was obtained using local regression

with R (2016) and the ggplot2 package (Wickham 2009).
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information (Salomon et al. 2015), and proprioception (Salomon

et al. 2013). These studies have shown that cross-modal signals

facilitate consciousness of a congruent visual stimulus, facilitat-

ing its entry into consciousness earlier compared either to vi-

sual only stimulation or to incongruent cross-modal

stimulation. Moreover, in order for this “unconscious” cross-

modal interaction to occur, the cross-modal signals need to be

matched. Thus, when the features of a suppressed visual stimu-

lus (e.g. orientation, spatial frequency, temporal frequency, and

spatial location) match those of a suprathreshold stimulus in

another modality this may facilitate visual consciousness, indi-

cating that the cross-modal enhancement of visual conscious-

ness only occurs when the different sensory signals can be

interpreted as arising from the same object. This suggests that

these unconscious cross-modal interactions reflect a genuine

perceptual effect, which is unlikely to be mediated by a cogni-

tive association between the cross-modal signals. In fact, it has

been shown (Lunghi and Alais 2013) that the orientation tuning

of the interaction between vision and touch is narrower than

the subjects’ cognitive categorization: the interaction between

visuo-haptic stimuli with a mismatch of only 7� does not occur,

despite the fact that observers cannot consciously recognize the

visual and haptic stimuli as being different. These results sug-

gest that signals from nonvisual modalities can interact with vi-

sual signals at early stages of visual processing, before the

emergence of the conscious representation of the visual stimuli

(Sterzer et al. 2014). Visual stimuli can also interact with sublim-

inal tactile signals: a study by Arabzadeh et al. (2008) has re-

ported that a dim visual flash is able to improve tactile

discrimination thresholds, suggesting that visual signals can

enhance subliminal tactile perception. A similar visuo-haptic

interaction has been reported in a study showing that congru-

ent tactile stimulation can improve visual discrimination

thresholds (Van Der Groen et al. 2013). These studies indicate a

tight interplay between visual and tactile consciousness. To our

knowledge, genuine sensory cross-modal interactions with

nonvisual subliminal auditory and olfactory signals have not

yet been reported, even though unconscious integration of audi-

tory and visual stimuli occurs after conscious associative learn-

ing (Faivre et al. 2014).

Taken together, these results show that different sensory

modalities can contribute to unimodal consciousness, as cross-

modal signals can enhance consciousness in a particular mo-

dality. What is the function of this cross-modal contribution to

consciousness? We suggest that cross-modal interactions might

facilitate consciousness of relevant sensory stimuli. Besides fa-

cilitating an efficient interaction with the external world under

normal circumstances, this mechanism could also be particu-

larly useful in conditions in which the unisensory information

is weak or impaired, e.g. during development (when the resolu-

tion of the visual system is coarse) or in case of sensory

damage.

Multisensory Interactions at Low Levels of
Consciousness

The previous section has outlined how unconsciously processed

stimuli from different sensory modalities interact, and affect

the formation of perceptual consciousness. These findings per-

tain to situations in which perceptual signals are not con-

sciously experienced during wakefulness, but a few studies

show that multisensory interactions may also occur under re-

duced levels of consciousness. There are several states which

are characterized by a decreased level of consciousness: a natu-

rally recurring state occurring during sleep, a pharmacologically

induced state under anesthesia, and a pathological state in the

case of disorders of consciousness (DOC) (Laureys 2005; Bayne

et al. 2016). Humans in low-level states of consciousness have

closed eyes most of the time. Therefore, while visual paradigms

may be highly appealing for studying consciousness under nor-

mal wakefulness, during altered states of consciousness nonvi-

sual signals may be more suitable.

One of the earliest works examining interactions between

different sensory modalities in states of diminished conscious-

ness focused on the feasibility of multisensory associations dur-

ing pharmacologically induced sleep (Beh and Barratt 1965).

Specifically, it was shown that a tone can be successfully paired

with an electrical pulse during continuous uninterrupted sleep

– which as far as we know is the first evidence for multisensory

interaction during human sleep. It took approximately 30 years

until the study was revisited, this time during natural human

sleep (Ikeda and Morotomi 1996). Again, a tone and an electrical

stimulus were associated, yet only during discontinuous slow

wave sleep (SWS) and not during Stage 2 sleep, implying that

multisensory associations might be sleep stage dependent. To

disentangle the influence of different sleep stages on multisen-

sory interactions, a more recent study investigated auditory–

olfactory trace conditioning during nonrapid eye movement

(NREM) and rapid eye movement (REM) sleep (Arzi et al. 2012).

Sleeping humans were able to associate a specific tone with a

specific odor during both NREM and REM sleep. Intriguingly, al-

though associative learning was evident in both sleep stages, re-

tention of the association during wakefulness was observed

only when stimuli were presented during NREM sleep, but was

irretrievable when stimuli were presented only during REM

sleep. This may suggest that although new links between sen-

sory modalities can be created in natural NREM and REM sleep,

access to this new information in a different state of conscious-

ness is limited, and sleep stage dependent.

Multisensory associative learning has also been demon-

strated in awake neonates (Stamps and Porges 1975; Crowell

et al. 1976; Little et al. 1984) and in sleeping newborns (Fifer et al.

2010). One to two days old sleeping infants presented with an

eye movement conditioning procedure, learned to blink in re-

sponse to a tone which predicts a puff of air (Fifer et al. 2010).

Taken together, these findings suggest that despite the different

nature of adult and newborn sleep (de Weerd and van den

Bossche 2003; Ohayon et al. 2004), sleeping newborns can also

rapidly learn to associate information from different sensory

modalities.

A similar auditory–eye movement trace conditioning was

used as an implicit tool to assess partially preserved conscious

processing in DOC patients (Bekinschtein et al. 2009). Vegetative

state (VS)/unresponsiveness wakefulness syndrome (UWS) and

minimally conscious state (MCS) are DOC that can be acute and

reversible or chronic and irreversible. VS/UWS is characterized

by wakefulness without awareness, and no evidence of repro-

ducible behavioral responses. In contrast, MCS is characterized

by partial preservation of awareness, and reproducible though

inconsistent responsiveness. Accurate diagnosis of conscious-

ness in DOC has significant consequences on treatment and on

end-of-life decisions (Giacino et al. 2002; Laureys 2005; Bayne

et al. 2016). Some individuals diagnosed with VS or with MCS

were able to associate between a tone and an air puff – an ability

that was found to be a good indicator for recovery of conscious-

ness. Intriguingly, when the same paradigm was applied to sub-

jects under the anesthetic agent propofol, no association
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between the tone and the air puff was observed (Bekinschtein

et al. 2009), suggesting that multisensory trace conditioning may

not occur under propofol anesthesia. This result is in line with

previous findings showing that multisensory neurons during

wakefulness become unimodal under propofol anesthesia

(Ishizawa et al. 2016). That said, there is considerable evidence

for multisensory interactions at the neuronal level under other

anesthetics (Populin 2005; Stein and Stanford 2008; Cohen et al.

2011; Costa et al. 2016).

Put together, the few studies that investigated multisensory

interactions at low levels of consciousness confirm that infor-

mation from different sensory modalities can be associated un-

consciously. Nevertheless, such unconscious interactions are

only found under specific conditions and states of reduced con-

sciousness, suggesting that the ability to associate stimuli from

different modality is probably state-specific.

Multisensory Interactions for Bodily Self-
Consciousness

The studies we reviewed so far manipulated perceptual signals

or examined cases in which consciousness was absent due to

neurological damage or sleep. Although this line of work yields

some important findings about consciousness and its neural

correlates, it overlooks an important aspect of consciousness,

namely the “Self,” the subject or “I” who is undergoing the per-

ceptual experiences (Blanke et al. 2015; Faivre et al. 2015). Recent

research on BSC has uncovered that the implicit and pre-

reflective experience of the self is related to processing of bodily

signals in multisensory brain systems [for reviews see Blanke

(2012); Blanke et al. (2015); Ehrsson (2012); Gallagher (2000)].

Neurological conditions and experimental manipulations re-

vealed that fundamental components of BSC, such as owning

and identifying with a body (body ownership), and the experi-

ence of the self in space (self-location) are also based on the in-

tegration of multisensory signals [e.g. Ehrsson (2007);

Lenggenhager et al. (2007)]. For example, tactile stimulation of

the real hand/body coupled with spatially and temporally syn-

chronous stroking of the viewed virtual hand/body give rise to

illusory ownership over the virtual hand [rubber hand illusion

(RHI)] or body [full body illusion (FBI)] as measured by subjective

responses as well as neural and physiological measurements

[Botvinick and Cohen (1998); reviewed in Blanke (2012) and

Kilteni et al. (2015)]. Such bodily illusions may impact percep-

tion, implying a tight link between the subject and the object of

consciousness. A recent study based on the RHI revealed that

perceptual consciousness and BSC are intricately linked, by

showing that visual afterimages projected on a participant’s

hand drifted laterally toward a rubber hand placed next to their

own hand, but only when the rubber hand was embodied

(Faivre et al. 2016). These results suggest that vision is not only

influenced by other sensory modalities, but is also self-

grounded, mapped on a self-referential frame which stems

from the integration of multisensory signals from the body.

Others have used sensorimotor correlations giving rise to

the sense of agency to establish a sense of ownership over a

hand (Sanchez-Vives et al. 2010; Tsakiris et al. 2010; Salomon

et al. 2016) or a body (Slater et al. 2010; Banakou and Slater 2014).

These findings suggest that BSC is a malleable and ongoing pro-

cess in which multisensory and motor signals interact such

that congruent information from different bodily senses form a

current spatio-temporal representation of the self [reviewed in

Blanke (2012); Ehrsson (2012); Sanchez-Vives and Slater (2005)].

As BSC is thought to be implicit and pre-reflective, one would

expect that it should not require consciousness of the underly-

ing sensory signals. Indeed, it has recently been demonstrated

that the FBI, based on visuo-tactile correspondences, can be eli-

cited even when participants are completely unaware of the vi-

sual stimuli or the visuo-tactile correspondence (Salomon et al.

2016). This suggests that subliminal stimuli or unattended bod-

ily signals may still contribute to the formation of BSC.

The above studies show that exteroceptive signals are fun-

damental in establishing the sense of self. In parallel, several

theories have suggested a central role for interoceptive signals

arising from respiratory and cardiac activity in BSC (Damasio

1999; Craig 2009; Seth 2013; Park and Tallon-Baudry 2014).

Indeed, recent experimental work has linked interoceptive sig-

nals to BSC. For example, two experiments employed a para-

digm similar to the RHI and FBI, but substituted the tactile

stimulation with cardio-visual stimulation: when participants

saw their hand/body flashing synchronously with their heart-

beat, they reported illusory ownership over the seen limb/body

compared with an asynchronous condition (Aspell et al. 2013;

Suzuki et al. 2013). Furthermore, changes in the neural process-

ing of heartbeats during the FBI (Park et al. 2016), as well as

when facial stimuli are modulated by heartbeat (Sel et al. 2016),

and learning of interoceptive motor tracking have been reported

(Canales-Johnson et al. 2015), suggesting that interoceptive pro-

cessing is tightly linked to BSC. Beyond their influence on BSC,

recent work has shown that cardiac activity and related neural

responses also affect visual consciousness, suggesting the pos-

sibility of interactions between processing of bodily signals for

BSC and perceptual consciousness (Faivre et al. 2015). Notably,

Park et al. (2014) have shown that spontaneous fluctuations of

neural responses to cardiac events (heartbeat evoked re-

sponses) are predictive of stimulus visibility. Furthermore, vi-

sual stimuli presented synchronously with the heartbeat were

found to be suppressed from consciousness through activity in

the anterior insular cortex, suggesting that the perceptual con-

sequences of interoceptive activity are suppressed from con-

sciousness (Salomon et al. 2016). Taken together, these studies

indicate that internal bodily processes interact with exterocep-

tive senses and have substantial impact on both our perceptual

and bodily consciousness.

In summary, the sense of self is formed through the combi-

nation of multisensory information of interoceptive and extero-

ceptive origins at a pre-reflective level. While often neglected in

classical perceptual consciousness studies, this fundamental

multisensory representation of the organism is critical to our

understanding of both bodily and perceptual consciousness and

their associated neural states.

Supramodal Properties of Metacognition

As described above, the sense of self includes the feeling of

owning a body, based on the integration of exteroceptive and

interoceptive bodily signals. Another crucial aspect of mental

life that relates to the self is our capacity to monitor our own

percepts, thoughts, or memories (Koriat 2006; Fleming et al.

2012). This capacity, long known as a specific form of introspec-

tion and now referred to as metacognition is measured by ask-

ing volunteers to perform a perceptual or memory task (first-

order task), followed by a confidence judgment regarding their

own performance [second-order task; Fleming and Lau (2014)].

In this operationalization, metacognitive accuracy is quantified

as the capacity to adapt confidence according to first-order task

performance, so that confidence is on average high after correct

4 | Faivre et al.
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responses, and low if an error is detected. Metacognition has a

crucial function in vision (e.g. confidence in spotting a flash of

light), as well as in other nonvisual modalities (e.g. confidence

in hearing a baby crying, or smelling a gas leak). As for the study

of perceptual consciousness, the study of perceptual metacog-

nition also suffers from a visual bias, most studies using single,

isolated and almost exclusively visual stimuli. As a result, the

properties of metacognition across senses remain poorly de-

scribed. Notably, an open question is whether metacognitive

processes involve central, domain-general neural mechanisms

that are shared between all sensory modalities, and/or mecha-

nisms that are specific to each sensory modality, such as direct

read out from early sensory areas involved in the first-order

task. Answering this question requires one to assess metacogni-

tion also for nonvisual stimuli. Recently, two studies met this

challenge by examining perceptual metacognition in the audi-

tory domain. First, it was shown that metacognitive perfor-

mance in an auditory pitch discrimination task correlated with

that in a luminance discrimination task (note that correlations

between tasks relying on vision or memory were not found, see

Ais et al. 2016). These results are supported by another study

showing that confidence estimates across a visual orientation

discrimination task and an auditory pitch discrimination task

can be compared as accurately as within two trials of the same

task, suggesting that auditory and visual confidence estimates

share a common format (de Gardelle et al. 2016). These similari-

ties between auditory and visual metacognition were further

supported by another study, in which metacognitive perfor-

mances during auditory, visual, as well as tactile laterality dis-

crimination tasks were found to correlate with one another

(Faivre et al. 2016). Metacognitive performances in these unimo-

dal conditions also correlated with bimodal metacognitive per-

formance, where confidence estimates were to be made on the

congruency between simultaneous auditory and visual signals.

Modeling work further showed that confidence in audiovisual

signals could be estimated from the joint distributions of audi-

tory and visual signals, or based on a comparison of confidence

estimates made on each signal as taken separately. In both

cases, these models imply that confidence estimates are

encoded with a supramodal format, independent from the sen-

sory signals from which they are built. Jointly, these results sug-

gest that perceptual metacognition involves mechanisms that

are shared between modalities [see Deroy et al. (2016) for

review].

General Discussion

The dominance of vision in consciousness studies may have led

to an inadvertent confounding of what we know about visual

consciousness and what consciousness is: subjective experi-

ence. Conscious experiences evoked by stimuli from different

modalities share common features yet each kind of sensory

consciousness also has particular qualities. For instance, while

sensory perception appears continuous, the temporal sampling

in olfaction is in the scale of seconds dictated by sniffing rate,

while it is in the scale of hundreds of milliseconds in vision

through eye movement, and is almost continuous in audition or

other senses such as proprioception (Sela and Sobel 2010; Van

Rullen et al. 2014). Another example among many is the role of

attention and its link with consciousness, which is likely to vary

across sensory modalities [for a special issue on this topic, see

Tsuchyia and van Boxtel (2013)]. At the neural level, most ac-

counts of consciousness assume that visual, tactile, auditory, or

olfactory conscious experiences stem from the transduction of

sensory signals of completely different nature (i.e. electromag-

netic, mechanical, or chemical, respectively), followed by the

processing of subsequent neural activity by a common mecha-

nism referred to as a neural correlate of consciousness (NCC:

Crick and Koch 1990a; Koch et al. 2016). Considerable progress

has been made regarding the description of NCCs, mostly

through the measure of brain activity associated with seen vs.

unseen visual stimuli. Among the likely NCC candidates, some

predominate, like the occurrence of long-range neural feedback

from fronto-parietal networks to sensory areas (Dehaene and

Changeux 2011), local feedback loops within sensory areas

(Lamme and Roelfsema 2000), or the existence of networks that

are intrinsically irreducible to independent subnetworks

(Tononi et al. 2016). If one accepts that a common mechanism

enables consciousness in different modalities, a NCC candidate

should apply to all senses, and not reflect idiosyncratic proper-

ties of visual consciousness only. While these limitations are

now often recognized (Koch et al. 2016), a clear disambiguation

between the processes which are idiosyncratic to visual con-

sciousness with those related to consciousness in other modali-

ties, or supramodal processes is central to advancing the field.

One step forward in identifying NCCs that are not idiosyncratic

of each sensory modality is to rely on a multisensory contras-

tive approach, whereby one contrasts simultaneously – with the

same participants, paradigms, and measures – brain activity as-

sociated with conscious vs. unconscious processing in different

senses. Within such framework, a supramodal NCC may be de-

fined as the functional intersection of all unisensory NCCs, and

consists in the common mechanism that enables conscious-

ness, irrespective of the specificities inherent to each sensory

pathway.

Beyond independent subjective experiences in distinct sen-

sory modalities, one may consider consciousness as a holistic

experience made of numerous sensory signals bound together

(Nagel 1971; Revonsuo 1999; Bayne and Chalmers 2003; Deroy

et al. 2014; O’Callaghan 2017; but see Spence and Bayne 2014).

Although often discussed in philosophy, this crucial aspect of

phenomenology has remained outside of empirical focus until

recently, with notable current theories stressing the importance

of consciousness for information integration [reviewed in

Mudrik et al. (2014)]. The results reviewed in “Multisensory inter-

actions below the perceptual threshold for consciousness” and

“Multisensory interactions at low levels of consciousness” sec-

tions clearly show that multisensory interactions occur in the

complete absence of consciousness, which challenges the theo-

retical predictions that consciousness is a prerequisite for mul-

tisensory processing. Nevertheless, the existence of

interactions between senses does not imply that two signals

from distinct modalities are integrated into a bimodal represen-

tation. To test if unconscious processing allows bimodal signals

to be processed as such, future studies should assess whether

bimodal subliminal signals are subject to the classical laws of

multisensory integration. In particular, future experiments

should assess if the strength of multisensory integration in-

creases as the signal from individual sensory stimuli decreases

(i.e. inverse effectiveness), and if the combinations of two unim-

odal signals produce a bimodal response that is bigger than the

summed individual responses (i.e. superadditivity).

Besides perceptual consciousness, the results reviewed in

“Multisensory interactions for bodily self-consciousness” and

“Supramodal properties of metacognition” sections show that

in addition to shaping perceptual experiences, multimodal in-

teractions are also central for self-representations, as they give

rise to the “I” or subject of experience (i.e. BSC), and can be
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processed to form a sense of confidence during the monitoring

of one’s own mental states (i.e. metacognition). Thus, beyond

overcoming the “visual bias” in the current literature, we argue

that studying consciousness in different sensory modalities,

and most importantly with combinations of sensory modalities,

can reveal important aspects of perceptual consciousness and

self-consciousness that would otherwise remain obscured.
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